Tessellations

A tessellation is also known as tiling. A tessellation is made by a shape being repeated over and over again. The shapes fit together without any overlapping or gaps. A tessellation can also be made by repeating a design made by interlocking regular polygons. (Remember, a regular polygon has sides of the same length.)

Create a tessellation using pattern blocks. Trace around each block used to make the tessellation.

\square

Coordinate System

Plot the following coordinates. Connect each dot in order.

\mathbf{A}	$-2,2$
\mathbf{B}	0,9
\mathbf{C}	2,2
\mathbf{D}	9,2
\mathbf{E}	$4,-2$

\mathbf{F}	$6,-9$
\mathbf{G}	$0,-5$
\mathbf{H}	$-6,-9$
\mathbf{I}	$-4,-2$
\mathbf{J}	$-9,2$

Polyhedrons and Platonic Solids
 - •••• •••••• ••••

Poly means "many" and hedron means "face". A polyhedron is a solid with only flat faces.

Circle the solid shapes that are polyhedrons.

There are five platonic solids. To figure out if a shape is a platonic solid, add the number of faces(F) and vertices (V), and subtract the number of edges (\mathbf{E}). If the answer is two, the figure is a platonic solid.
$\mathbf{F}+\mathbf{V}-\mathbf{E}=\mathbf{2}$

Shape	Faces (F)	Vertices (V)	Edges (E)	F+V+E =	Is it a Platonic Solid?
Dodecahedron					
Octahedron					
Cube					
Tetrahedron (Triangular Pyramid)					
Icosahedron					

