Contents

\circlearrowleft TEACHER GUIDE

- Assessment Rubric 4
- How Is Our Resource Organized? 5
- Bloom's Taxonomy for Reading Comprehension 6
- Vocabulary 6
0 STUDENT HANDOUTS
- Reading Comprehension

1. What Is Force?
2. Kinds of Force 7
3. More Than One Force
4. Balanced \& Unbalanced Forces
5. Force E Mass
6. Gravity
7. Other Forces That Act Without Touching

- Hands-on Activities 12
- Crossword 16
- Word Search 17
- Comprehension Quiz 18
EZV EASY-MARKING ${ }^{\text {TM }}$ ANSWER KEY 20
MINI POSTERS 22

FREE! 6 Bonus Activities!

3 EASY STEPS to receive your 6 Bonus Activities! Go to our website: www.classroomcompletepress.com \bonus

- Click on item CC4508 - Force
- Enter pass code CC4508D

ME:

$:$ 1. Circle the word True if the statement is true. Circle the word False if it is false
a) A force cannot move something without touching it. True False
b) Air resistance makes things move faster True False
c) Gravity is a force. True False
d) Things made of matter have mass. True False
e) When something is sliding down a
2. Put a check mark (\checkmark) next to the answer that is most correct.
a) Which describes all forces?
\bigcirc A a push or a pull
○ B invisible energy
C a thing that mo
D something thati does work
b) Which force makes things fall to Earth?
\bigcirc A friction
$\begin{array}{ll}\bigcirc & \text { B } \\ \text { O gravity } \\ \bigcirc & \text { C } \\ \text { airresistance } \\ \text { ○ } & \text { m }\end{array}$
c) Which force only acts between things that are touching?
\bigcirc A friction
○ B gravity
\bigcirc C magnetic force
O D electrostatic force
© CLASSROOM COMPLETE \& PRESS

We can divide forces into two kinds. Some forces are contact forces, and other forces exert force at a distance. "Contact" means things must touch for one thing to exert a force on the other. "Force at a distance" means a force acts on something without touching it.

Contact forces make the most sense to us. We push on something with our hands and it moves away from us. We pull on something and it follows us. We feel the push or pull and see the motion

Contact forces don't always cause motion. No matter how hard you push on the side of a house, it won't move. You can pull on a locked do won't open. It sounds funny, but this is because no matter now hard you pull,
 the door pulls back just as hard!

Another contact force is the force of friction. This is the force that acts between two things that gre touching and sliding past each other. The force of friction is large between rough surfaces and small between smooth surfaces. Friction always acts against sliding motion. If the force of friction is large enough, the thing won' \dagger slide at all.
© CLASSROOM COMPLETE \& PRESS

Answer the questions in complete sentences.
3. What is a contact force? Give an example of a contact force
4. What is force at a distance? Give an example of a force that acts at a distance.

Extension \& Application

5. Name, describe, or draw something that is moving that has at least three forces acting on it. One of the three forces must be a force that acts at a distance. Draw arrows to show the directions int which the forces are arting. Write the name of each force next to its arrow. If you do not draw themoving thing, tell which direction the thing is moving (left, right, up, or down). Then tell which way the arrows would point.

Activity Two

The Force of Air Resistance

Learn about the force of air resistance. When things fall they are acted on by two forces: gravity and air resistance. The force of gravity is the same on all objects. This means that, if there were no air, everything would fall the same way. That is, everything would fall with the same acceleration. It's hard to believe, but a feather and a rock would hit the ground at the same time if there were no air! This has been proved by dropping things in a container that has had the air pumped out of it.
You will need to do this activity with a partner.
FOR THIS ACTIVITY, you will need:

- A stopwatch
- Several of the following things:
a feather
a balloon
a coin
a block of wood
a sheet of paper
a dried pea or bean
STEPS:

1. One person drops each object from aheight. Drop all objects from the same height. 2. The other person uses the stop watch to measure how long it takes the object to fall.
2. Try different sizes of the same thing. Forexample, cut the paper into smaller pieces to see if size changes the time to fall.
Remember: The longer it takes something to fall the greater is the air resistance.

QUESTIONS:

1. How does mass affec

2. How does the amount $)$ surface affect air resistance?
3. You may have seenhelium balloons. They don't fall at all, but rise into the air.
a) Does this mean helium balloons have no mass?
b) Do they have negative mass?
they have negative air resistance?
Reading about the "buoyant force" will help you answer these questions.
© classroom complete $\underbrace{}_{\text {PRESS }}$
(13)

NAME

Part C

Answer the questions in complete sentences.

1. Name two forces acting on a falling object. Tell the direction in which each force

2. Name the two poles of a magnet. When do two poles attract each other? When do two poles repel each other?

NAME:

Word Search Force

Find all of the words in the Word Search. Words are written horizontally, vertically, diagonally, and some are even written backwards.

B	S	O	U	T	H	G	I	E	W	C	D	F	G
H	S	J	K	L	M	M	N	V	P	Q	R	S	T
V	A	B	A	L	A	N	C	E	D	W	X	Z	B
E	M	T	C	A	T	N	O	C	C	E	D	F	G
V	A	H	J	K	T	L	M	T	C	N	P	R	Q
I	G	A	C	C	E	L	E	R	A	T	I	O	N
T	N	R	S	E	R	T	O	O	E	A	I	O	O
A	E	P	S	V	L	F	W	S	X	P	R	Z	I
G	T	O	B	M	C	E	D	T	C	T	E	F	T
E	G	S	H	J	A	K	C	A	H	L	X	L	C
N	O	I	T	C	A	R	T	T	A	N	E	M	I
P	Y	T	I	V	A	R	G	I	R	Q	R	R	R
S	T	I	V	W	X	N	Z	C	G	I	T	B	F
C	D	V	F	G	H	J	E	K	E	L	C	M	N
P	Q	E	L	O	P	C	I	T	E	N	G	A	M
R	B	S	C	T	D	V	F	W	G	X	H	Z	L

- CLASSROOM COMPLETE \& PRESS

17

Isaac Newton

First law of motion:

An object at rest remains at rest, and an object in motion continues to move in a straight line with a constant speed unless an unbalanced force acts upon it.

Third yaw of motion:
every action force there is an equal reaction force in the opposite direction.

Answer the questions in complete sentences.

3. What is a contact force? Give an example of a contact force.
4. What is force at a distance? Give an example of a force that acts at a distance
\qquad
\qquad

Extension \& Application

5. Name, describe, or draw something that is moving that has at least three forces acting on it. One of the three forces must be a force that acts at a distance. Draw arrows to show the directions in which the forces are acting. Write the name of each force next to its arrow. If you do not draw the moving thing, tell which direction the thing is moving (left, right, up, or down). Then tell which way the arrows would point

