Contents

@ TEACHER GUIDE

- Assessment Rubric 4
- How Is Our Resource Organized? 5
- Bloom's Taxonomy for Reading Comprehension 6
- Vocabulary 6
- STUDENT HANDOUTS
- Reading Comprehension

1. What Is Motion?
2. How to Recognize Motion
3. Velocity and Speed
4. Acceleration 7
5. How to Graph Motion
6. Vibrating Motion
7. Wave Motion

- Hands-on Activities 12
- Crossword 16
- Word Search 17
- Comprehension Quiz 18
E2V EASY MARKING ${ }^{\text {TM }}$ ANSWER KEY 20
MINI POSTERS 22
FREE! 6 Bonus Activities!3 EASY STEPS to receive your 6 Bonus Activities!- Go to our website:www.classroomcompletepress.com \bonus
- Click on item CC4509 - Motion
- Enter pass code CC4509D

Acceleration

$:$ 1. Circlethe word True if the statement is true. Circlethe word False if it is false.
a) Acceleration is one kind of change in motion
True False
b) If you are in a bus that suddenly accelerates, you can feelit.
True False
c) Forces push, but they do not pull.

True False

d) Only solid things have mass. True False
e) Acceleration is the sa
True
False
2. Put a check mark (\checkmark) next to the answer that is most correct.
a) What is acceleration?
\bigcirc a speeding up
O B slowing down
O c a steady sp
b) Which of thes

O A 50 is an acceleration?
O B 50 meters per second to the north
cond per second
O D 50 meters per second in a straight line
c) Why do things accelerate when they fall?

O A Air has no friction.
O B Gravity pulls on them.
Oc Falling things have no mass
O d Air pressure pushes on them
© classroom complete $\hat{\varepsilon}_{\text {PRESS }}$

youmay reme that
ou may remember that speeding up is called acceleration, and slowing down is called deceleration. Constant acceleration means speeding up in a steady way. Each second, the thing that is accelerating gains the same amount of speed.
Things that are falling have constant acceleration. Every second a falling rock increases its speed by 32 feet per second. We say

that the rock accelerates at 32 feet per second per second it decelerates by 32 feet per second per second until it read

ow a rock into the air height. Then it falls back to the ground accelerating at 32 feetp speed at its greatest A car might accelerate from zero to 55 miles per hour in 10 seconds. A speed of 55 miles per hour is the same as 80 feet per second. This meansthe carhas accelerated at 8 feet per second per second $(80 \div 10=8)$.

© CLASSROOM COMPLETE \& PRESS 8

Motion CCP4509-4 NAME:

Answer the questions in complete sentences.
3. What does the term constant acceleration mean? Give an example of something that has constant acceleration
4. A worker pushes on a box of apples and it slides across the floor of a barn. While he is pushing, the box accelerates. After the box leaves his hands it decelerates until it comes to a stop.
a) Tell two things that would have made the box accelerate more if they were changed.
b) Tell two things that cause the box

5. When sky divers jump from dirplanes thex are acted on by two main forces on their way to the ground. The forces dre gravity and air resistance. When the sky diver opens the parachute, things change because a parachute has more air resistance than a body. You also need toknow that air esistance increases with speed. Think of all these things as you answer the
a) When is the sky diver accelerating?
b) What happens to the sky diver's motion when air resistance becomes equal to the force of gravity?

[^0]is the force that causes falling things to accelerate.

Vibrating Strings

In this activity, you will study vibrating strings. You will try to find out what the length of a string has to do with the frequency of the note it makes when it vibrates.
For this activity all you really need is a rubber band. You could learn more, however, if you have any of the following: a guitar, pitch pipe, piano, or setiof tuning forks. This is what you do:

1. Stretch the rubber band as tight as you can between two points the way a guitar string is stretched across the neck of a guitar
2. Pluck the rubber band and listen to the note it makes. Try to find the same note on a piano, tuning fork, or pitch pipe (if you have them).
3. Hold the rubber band down in the middle and pluck one side of it. How did the note change? Can you find the new note the piano?
4. Try holding the rubber band down at other places to make different lengths that will make different hotes. You can do the same thing with guitar strings if you have a guitar.

© classroom сомPLETE $\}_{\text {press }}$

Word Search

Find all of the words in the Word Search. Words are written horizontally, vertically, diagonally, and some are even written backwards.
acceleration AMPLITUDE CONSTANT deceleration FREQUENCY FRICTION GRAPH GRAVITY FORCE

MASS

 MATTER MEDIUM MOTION PITCH POSITION ROTATION TIME

SEISMIC SLOPE VELOCITY VIBRATE VIBRATION wave SIZE

E	C	R	\bigcirc	F	M	Y		B	C	D	F	G	S
S	I	Z	E	U	M	D		1	H	K	J	H	E
S	T	N	I	V	E	W	E	X	C	Y	Z	B	1
J	R	D	\bigcirc	E	D	H	C	G	T	I	M	E	S
K	E	L	P	I		M	E	N	I	H	P	Q	M
M	T	S	W	V			L	S	P	Z	R	\bigcirc	1
Y	T	Z	B	C		A	E	A	D	F	T	G	C
E	A	C	C	E		E	R	A	T	I	\bigcirc	N	G
T	M	M	V	L	P	G	A	B	\bigcirc	K	J	R	H
A	N	A	P	Q	M	R	T	N	1	S	A	T	N
R	W	C		A	A	Z	I	Y	X	V	W	\bigcirc	V
B	D	+	S	G	H	P	\bigcirc	S	I	T	I	\bigcirc	N
I	N	S	L	\bigcirc	P	E	N	T	M	T	L	K	J
V	E	L	\bigcirc	C	I	T	Y	P	A	Q	R	S	T
B	Z	Y	X	W	T	N	A	T	S	N	\bigcirc	C	V
C	F	R	I	C	T	I	O	N	K	L	M	N	P
D	F	G	H	J	F	R	E	Q	U	E	N	C	Y

© CLASSROOM сомPLETE $\}_{\text {PRESS }}$
17

(B)After you Read

Comprehension Quiz

: Circlethe word True if the statement is true. Circlethe word False

: if it is false.

1) Speed is time divided by distance.
True False
2) Velocity is speed in a given direction. True False
3) Things in motion decelerate because of the force of frictio True False
4) All sounds come from so

- 5) The slope of a distance and time graph is s

$$
\text { True } \quad \text { False }
$$

6) The more mass a thing has, the more a force will change its motion.
7) Sound can trave

- True False

Part B
Put a check mark (\checkmark) next to the answer that is most correct.

1. What is a measure of the height of a wave on water?

A amplitude
O B frequency
\bigcirc C medium
2. Which kind of motion does a rock have just after it dropped from a high bridge? O a constant speed
O B constant velocity
C constant acceleration
O d constant deceleration
3. Which two things could you graph to show speed?

O a force and mass
O belocity and time
O distance and time
O d mass and distance

Vibrating and Oscillating Motions

Bee
Over 200
Wing-Beats
Per second
p.!

Wood Pecker
20-50
Pecks

Answer the questions in complete sentences.

3. What does the term constant acceleration mean? Give an example of something that has constant acceleration.
4. A worker pushes on a box of apples and it slides across the floor of a barn. While he is pushing, the box accelerates. After the box leaves his hands it decelerates until it comes to a stop.
a) Tell two things that would have made the box accelerate more if they were changed.
\qquad
b) Tell two things that cause the box to decelerate.

Extension \& Application

5. When sky divers jump from airptanes they are acted on by two mairy forces on their way
to the ground:The forces are gravity dad air resistance. When the sky diver opens the
porachute. things change because o pargchute has more air resistance then a body. You
diso need to know that air resistance increases with speed. Think of dll these things as you
diso need to know that
answer these questions.
a) When is the sky diver accelerating?
b) What happens to the sky diver's motion when air resistance becomes equal to the force of gravity?
c) What happens to the sky diver's motion when the parachute is opened?

[^0]: c) What happens to the sky diver's motion when the parachute is opened?

