Contents

@ TEACHER GUIDE

- Assessment Rubric 4
- How Is Our Resource Organized? 5
- Bloom's Taxonomy for Reading Comprehension 6
- Vocabulary 6
- STUDENT HANDOUTS
- Reading Comprehension

1. What Is Motion?
2. How to Recognize Motion
3. Velocity and Speed
4. Acceleration
5. How to Graph Motion
7
6. Vibrating Motion
7. Wave Motion

- Hands-on Activities 12
- Crossword 16
- Word Search 17
- Comprehension Quiz 18
E2V EASY MARKING ${ }^{\text {TM }}$ ANSWER KEY 20
MINI POSTERS 22
FREE! 6 Bonus Activities!3 EASY STEPS to receive your 6 Bonus Activities!- Go to our website:www.classroomcompletepress.com \bonus
- Click on item CC4509 - Motion
- Enter pass code CC4509D

Vibrating Motion

$:$ 1. Circle the word True if the statement is true. Circle the word False if it is false.
a) Vibrating motion is up and down or back and forth.
b) Sound can travel through solids.

True False

c) Sounds are made by things that vibrate

True False
d) Pitch is the same as loudness.

$$
\text { True } \quad \text { False }
$$

e) Sound travels faster than cars.
2. Put a check mark (\checkmark) next to the answer that is most correct.
a) Which of these moves with a vibrating motion?
\bigcirc a a spinning top
O B a falling pebble
O c a flowing stream
O d a plucked guitar stiving
b) What is frequency
\bigcirc A how farsomething vibrates
O B how long something vibrates
O c how often something vibrates
O d how loydly something vibrates
c) Which does not carry sound?
\bigcirc A iron
\bigcirc B water
O c nitrogen gas
O d empty space
© classroom сомPLETE \& $_{\text {PRESS }}$ that move with a vibrating motion, arranged from most pleasant to most unpleasant. When something vibrates it

Harp

Bee
 moves back and forth or up and down.
We can see the jackhammer and woodpecker's head moving back and forth. The motion of the harp strings and bee's wings are so fast we just see a blut The speed of the vibration is called the frequency. Frequency tells how often (how frequently) the thing vibrates. It is usually given in vibrations per second
When the vibration has a low frequency of just a few vibrations per second, we can hear each separate vibration. We hear each whack of the/woodpecker's bill. When the frequency is high, we hear a steady hum or a musicalingte
Musical instruments make sounds by vibratirfy at frequencies between about 25 and 4,000 vibrations per second. Our ears are edble te hear sounds between about 20 and 20,000 vibrations per second.
In music the word pitch is usually used instead of frequency. High-pitched notes have

high frequencies, and low-pitched notes have low frequencies. Every sound comes from something thatis vibrating. In different kinds of musical instruments, different things vibrate to make the notes. For guitars, violins, pianos, and harps, it is the strings. For brass horns, it is the metal. For drums it is the drum head.
© CLASSROом сомPLETE ${ }^{\text {ใ }}$ PRESS 8

Motion CCP4509-6

NAME:

Answer the questions in complete sentences.
3. Tell how we hear a sound. Begin with how the sound starts and end with a message about the sound reaching the brain.
4. Choose two musical instruments and tell how each sends put musical sounds.

5. How are sound waves and seismic waves silmilar to ach other? How are they different from each other?

Extension \& Application

6. The musical scale is divided into octaves. When two musical notes are one octave apart, the higher note has exactly twice the frequency of the lower note. People can hear notes between about 20 and 20,000 vibrations per second.

Circular Motion

This activity is best done with TWO people. You and your partner will need something to sit or stand on that will spin. A swivel office chair works well. A large "lazy Susan" platter will also work. You will also need a bicycle wheel. You will need the whole wheel and axle system, not just a tire. (Your teacher may be able to help you find these things.)
This activity has two parts.

Part A

1. Hold the bicycle wheel by the axle with two hands. Have the other person spin the wheel as fast as he or she can.
2. When the wheel is spinning, try to change its ANGLE by moving one hand up while keeping the other where it is.
3. Tell what happened. Something in motion changed direction, so it must have been acted on by a force. What changed direction? What was the force?

Part B

1. Sit in the office chair and holid your arms straight out. Have someone spin you as fast as they can by pushing on one of your arms.
2. Now, pull your arms in tight against your body. What happened?
3. While you dre still spinning, put your arms out again. What happened?
4. For Steps 2 and 3
, what was the change in motion? What force was involved?
© classroom complete $\underbrace{}_{\text {PREss }}$
(14)

NAME

Comprehension Quiz

Part C

Here are some short answer questions. The first three are about the same spaceship.

1. You have been captured by aliens who have locked you in a windowless room on their spaceship. The spaceship is in outer space far from Earth or anything else. As you sit in the room, which of these questions could you answer? Write "could tell" or "could not tell"
a) Is the ship moving at a constant speed?
b) Is the ship accelerating?
c) Is the ship rotating?

d) Is the ship changing direction?
e) Is the ship standing still?
2. You discover a window in the wall of the speacestip. You pull open the curtains and look out. All you see are very distant stars, Gquid yourlearn anything new about the
3. Help is on the way! You see the space shutifle coming to rescue you. Its engines are going full blast. Can you hear the space shuttle's engines as it approaches? Explain why or why not.

4. Things change their motion because they are being acted on by a force. a) How does the size of the force affect how much the motion changes?
b) How does the mass of the thing affect how much the motion changes?
5. Name two things that appear to move across the sky but do not. What motion of Earth makes it look like these things move across the sky?

SUBTOTAL:
NAME: \qquad

Word Search

Find all of the words in the Word Search. Words are written horizontally, vertically, diagonally, and some are even written backwards.
acceleration AMPLITUDE CONSTANT deceleration FREQUENCY FRICTION GRAPH GRAVITY FORCE

MASS

MATTER
MEDIUM
MOTION
PITCH
POSITION
ROTATION
TIME

E	C	R	\bigcirc	F	M	Y			C	D	F	G	S
S	1	Z	E	U	M	D			H	K	J	H	E
S	T	N	1	V	E	W	L	X	C	Y	Z	B	I
J	R	D	\bigcirc	E	D	H	C	G	T	I	M	E	S
K	E	L	P	1		M	E	N	1	H	P	Q	M
M	T	S	W	V		1	L	S	P	Z	R	\bigcirc	1
Y	T	Z	B	C		A	E	A	D	F	T	G	C
E	A	C	C	E		E	R	A	T	,	\bigcirc	N	G
T	M	M	V	L	P	G	A	B	\bigcirc	K	J	R	H
A	N	A	P	Q	M	R	T	N	1	S	A	T	N
R	W	C		A	A	Z	1	Y	X	V	W	\bigcirc	V
B	D	F		G	H	P	\bigcirc	S	I	T	1	\bigcirc	N
,	N	S	L	\bigcirc	P	E	N	T	M	T	L	K	J
V	E	L	\bigcirc	C	I	T	Y	P	A	Q	R	S	T
B	Z	Y	X	W	T	N	A	T	S	N	\bigcirc	C	V
C	F	R	1	C	T	I	O	N	K	L	M	N	P
D	F	G	H	J	F	R	E	Q	U	E	N	C	Y

© CLASSROOM COMPLETE $\ell_{\text {PRESS }}$
17

Answer the questions in complete sentences.

3. Tell how we hear a sound. Begin with how the sound starts and end with a message about the sound reaching the brain.
4. Choose two musical instruments and tell how each sends out musical sounds.
5. How are sound waves and seismic waves similar to each other? How are they different from each other?
\qquad

Extension \& Application

6. The musical scale is divided into octaves. When two musical notes are one octave

Explain or show how you got your answer in the space below

© CLASSROOM COMPLETE $\xi_{\text {PRESS }}$

