
—Remember
To indicate that a decimal repeats, put a bar over the repeating sequence.

Find the equivalent decimal for each problem. Shade the answers to find a famous theorem.

1. $\frac{3}{4}=$
2. $\frac{1}{3}=$
3. $\frac{5}{8}=$
4. $\frac{2}{9}=$
5. $\frac{11}{12}=$
6. $\frac{17}{20}=$
7. $\frac{3}{18}=$
8. $\frac{12}{25}=$
9. $\frac{7}{14}=$
10. $\frac{17}{50}=$
11. $\frac{5}{6}=$
12. $\frac{2}{3}=$
13. $\frac{1}{4}=$
14. $\frac{7}{9}=$
15. $\frac{7}{15}=$
16. $\frac{9}{20}=$
17. $\frac{7}{8}=$
18. $\frac{1}{10}=$
19. $\frac{5}{11}=$
20. $\frac{9}{16}=$

Write as a terminating decimal.

$\frac{1}{2}=$	$\frac{1}{8}=$
$\frac{1}{5}=$	$\frac{3}{16}=$

Write $\frac{5}{8}$ as a terminating decimal.

$$
\frac{5}{8}=.625
$$

Write $\frac{2}{3}$ as a repeating decimal.

$$
\frac{2}{3}=.666 \ldots=. \overline{6}
$$

$\frac{1}{4}=\quad \frac{3}{8}=$
$\frac{1}{16}=$
$\frac{13}{20}=$
$\frac{5}{25}=\quad \frac{7}{16}=$

Rounding quotients in division.

