WORK & MACHINES

BY RON SIMMONS

TABLE OF CONTENTS

Simple Machines	1
Everyday Machines	2
Common Building Machines	3
Friction: Good and Bad	4
First-Class Levers	5
Solving a Problem with Levers	6
Second-Class Levers	7
Third-Class Levers	8
Pairs of Levers	9
Seek and Find Levers	10
The Inclined Plane	11
Measuring Effort and Height	12
Fixed Pulleys	13
Movable Pulleys	14
Combining Pulleys	15

Making Your Own Pulleys	16
Solving a Problem with a Pulley	17
Block and Tackle, and Gears	18
Pulley Puzzle	19
Wheel and Axle	20
The Wrench (as wheel and axle)	21
The Wedge	22
Everyday Wedges	23
The Screw	24
Using the Screw	25
Complete & Fold Book, pp. 1–4	26
Complete & Fold Book, pp. 5–8	27
Review	28
Work & Machines Background Material	29
Answers	31

Activities explore the effects of simple machines. Lessons focus on the concepts of force, friction, gravity, and inertia.

General background information, suggested activities, questions for discussion, and answers are included. Encourage students to keep completed pages in a folder or notebook for further reference and review.

Copyeditor: Cindy Barden Illustrations: Thompson Design and Nancee McClure Cover and Inside Design: Good Neighbor Press, Inc. © Copyright 2000 Milliken Publishing Co

All rights reserved.

Permission to reproduce pages extends only to the teacher-purchaser for individual classroom use, not to exceed in any event more than one copy per student in a course.

The reproduction of any part for an entire school or school system or for commercial use is strictly prohibited.

When we talk about machines, we use the word "work" in a special way. Work has two parts: how much force or effort is needed to do the work, and how far the force or effort is used. The second part is called distance. Thus, work can be defined as the movement of force through distance. If you lift a book from the floor to a table, you are doing work. If you lift the same book from the floor to a high shelf, you are doing more work. You are using the same force or effort for a longer distance.

There are many other types of simple machines. Create some simple imaginative machines of your own. You can use tongue depressors or craft sticks, rubber bands, spools, doorknobs, or string to make your own simple machines. Do not limit yourself to these materials only. Name your machines. Describe the work they could do.

On another sheet of paper, make an outline describing your steps in making one of your simple machines.

• • • • •	WORK	& MACH		
	Everyda		CHINES	
Most of the work we d shelf without a machin example, we cannot lif give us more force.	o everyday is not difficu e. But there are many th t a car by ourselves to fi.	lt. We lift sol hings we do x a flat tire. Y	me books to the table c that we cannot do by We need a jack, a mach	or even to a high ourselves. For hine, to
A bicycle is another kin you can go much faste or more distance, in th	d of machine. Even tho r on a bike. With this m e same amount of time.	ugh you car achine, you	n probably run fast, can go much farther,	fulcrum
A broom is a simple ma machine, the top part distance. But the botto distance. Therefore, the end of the broom to co	achine that is used to sw of the handle moves bac m part, or bristles, move e force you apply on the over a greater distance.	veep the floo ck and forth e through a e handle cau	or. As you use this only a short much greater uses the bristle	force
force fulcrum tire jack			broom	load
Simple	help do		by making work	·
Force and	are always in	volved in do	ing	With a
an object a greater List a dozen simple ma machines.	machine, to do the sam chines. On another pag	e amount o e sort them 	f work with less force, y into columns under the	ou have to move
	0 11 11	- 2		

Date _____

WORK & MACHINES COMMON BUILDING MACHINES Without machines, some things could not be done! Did you ever try cracking a nut with your bare hands, or pulling a nail out of a board with your fingers? You try as hard as you can but you just cannot do it. If you had a simple machine called a crowbar to help you pull the nail from the board, the task would be easy. When you pull down on the handle of this simple machine, the small force that you use on the handle becomes a much larger force at the place where the crowbar hooks around the nail. You use less force with the crowbar than you used with your hand. And when you used only your hand, you could not do the job at all. The crowbar increased the force that you applied so you did not have to work so hard. pulling nail force load fulcrum Other common building machines we use as tools are a _____, ____, _____, and a pair of ______. Name the six types of simple machines. 1. _____ 4. _____ 5. _____ 2. _____ 6. _____ 3. Give two more examples of building tools that are simple machines.