TABLE OF CONTENTS

Activity Suggestions	Unit 3
,	Games, Fun and Mystery
	A Snack and a Movie (#25)
Hout 1	The Chair Challenge (#26) 33
Unit 1	Birthday Order (#27)
Foundation	Let's Tee Up! (#28)35
Bingo! (#1)9	Eleven Eleven (#29)
Absolute Value (#2) 9	Shopping with Marcy (#30) 37
Collecting Like Terms (#3)11	Anyone for Bowling? (#31)39
Signs and Symbols (#4)	Take Five (#32)
Multiplying Terms with Exponents (#5)13	The Code (#33)41
Power to a Power (#6)	Levitators (#34)41
Deal or No Deal? (#7)	
Dividing Terms with Exponents (#8) 15	Unit 4
The Distributive Property (#9)	Linear Equations
Algebraic Sudoku (#10)	Linear Equations (#35)
Fact or Fiction? (#11)19	Rise over Run (#36)
Tace of Fieldin (#11)	"m" Is for Slope (#37)45
1 January 71	"b" Is for y-intercept (#38)
Unit 2	Give me an "m"! Give me a "b"! (#39) 47
Equations	Using the Slope (#40) 47
Equation Strategy (#12)19	Even More Fact or Fiction (#41)49
The Two-Step (#13)	Graphing Inequalities (#42) 49
Distributor Man (#14) 21	The Constitution (#43)51
Variable on Both Sides (#15) 23	
Classical Music (#16)	Unit 5
The "Fractionator" (#17)	
Ti <u>x</u> Ta <u>y</u> Toe (#18)	System of Equations
More Fact or Fiction (#19)	Systems (#44)
Inequalities (#20)	Graphing Method (#45)
How Hot Is It Really? (#21)29	Addition/Subtraction Method (#46) 53
Consecutive Order (#22)	Substitution Method (#47)
Slugger (#23)31	The Sitter (#48)
Teamwork (#24)	Tricks of the Trade (#49)
	Go, Team! (#50)
	Hoops! (#51)59
	3D (#52)59

Unit 6	A Factor Medley (#80)87
	Unit 9
Polynomials	Pre-Geometry
Polynomials (#53)	,
Poly-Subtracting-Nomials (#54) 61	Triangles and Rectangles (#81)89
The FOIL Method (#55)	Lines, Rays and Planes (#82)89
Difference of Squares (#56) 63	Circles (#83)
Perfect Square Trinomials (#57)65	Degrees of Kevin Polygon (#84)
Multiplying Polynomials (#58) 65	More Math Signs and Symbols (#85) 93
Dividing Polynomials (#59)67	
	Unit 10
Unit 7	Radicals
Factual, Exploratory and Logic	Radically Speaking! (#86)
Leah's Schedule (#60)	• • • • • • • • • • • • • • • • • • • •
Computer Terms (#61)	Simply Radical (#88)
Branches of Mathematics (#62)69	Radical Rule (#89)
Pretty Patterns (#63)71	Fact or Fiction? (#90)97
Meet Christina's Teachers (#64)71	Rationalizing the Denominator (#91) 99
Trigonometry (#65)	The Root of the Problem (#92)99
Megapixels (#66)	
Logarithms (#67)	Unit 11
Imagine That! (#68)	PSAT Prep
More Computer Terms (#69)77	PSAT Prep Introduction (#93)101
Mathematicians (#70)	Grid-In (#94)
Inventors (#71)	It's Prime Time! (#95)103
World Currency (#72)	Merit and Recognition (#96) 103
	Here's a Tip (#97)105
Unit 8	
Factoring	Unit 12
Greatest Common Monomial Factors (#73) 81	
Factoring the GCMF (#74) 81	Quadratic Equations
Factoring a Difference of Squares (#75)83	Quadratic Equations (#98)
Factoring Perfect Square Trinomials (#76) 83	Factoring—Not Again! (#99)
Factoring Carnival (#77)	The Quadratic Formula (#100)107
Factor by Grouping (# 78)	
General Trinomials (#79)87	_

UNIT 1 Foundation

Collecting Like Terms

Like terms have the same variable(s) and exponent(s). The terms 2xy and xy are like terms, but x^2 and x^3 are not. Like terms may be collected by adding or subtracting the coefficients in front of those terms. For example, 4x - 2x + x = 3x.

Simplify:

1.
$$2x + y - x + 3y$$

3.
$$5x + 4y - 2x^2 - xy$$

4.
$$-5x - y - 3x + 2y$$

5.
$$-6z^2 - 3 - z^2 + 7$$

UNIT 1 Foundation

Signs and Symbols

Match the sign or symbol with its meaning.

a. |...|

b. **π**

c. ±

d. ≤

e. ≈

f. ≠

g. >

h. √

_____ 1. plus or minus

_____ 5. approximately

____ 2. square root

_____ 6. less than or equal to

3. absolute value

_____ 7. not equal to

____ 4. 3.14

_____ 8. greater than

UNIT 3 Games, Fun and Mystery

Anyone for Bowling? Scoring a game of bowling requires that you learn these symbols:

- 1. X = a strike (10 plus the number of pins knocked down on the next two rolls);
- 2. / = a spare (10 plus the number of pins knocked down on the next roll) and
- 3. = (miss). For example:

Now, score the following game of bowling:

1	2		3 4		4	5				
	7		8	1		X	5	4		Χ
		7								
6			7		8		9		10	
6		X	6		8	X	9 -	9	8	9

Workout

UNIT 3 Games, Fun and Mystery

Take Five

Directions: Answer the five questions below. Be careful, some may be tricky!

- 1. How many eights are there in all between 1 and 100?
- 2. If you read pages 9-31, how many pages have you read?
- 3. What is 10 divided by $\frac{1}{2}$ then added to four?
- 4. When four friends get together, each friend shakes hands with each of the other friends. How many handshakes will there be all together?
- 5. Without looking at the telephone, what are the actual telephone numbers used to dial: 1-800-ALGEBRA.

UNIT 10 Radicals

$\sqrt{a} \cdot \sqrt{b} = \sqrt{ab}$ Radical Rule

The rule above makes multiplying radicals easy. Here are some examples:

a.
$$\sqrt{3} \cdot \sqrt{2} = \sqrt{6}$$

b.
$$3\sqrt{2} \cdot 2\sqrt{8} = (3 \cdot 2)\sqrt{2 \cdot 8} = 6\sqrt{16} = 6 \cdot 4 = 24$$

Multiply and simplify the following expressions:

1.
$$\sqrt{7} \cdot \sqrt{3} =$$

2. 3
$$\sqrt{5}$$
 • 4 $\sqrt{7}$ =

3.
$$\sqrt{3} \cdot \sqrt{12} =$$

4.
$$2\sqrt{2} \cdot 5\sqrt{6} =$$

5.
$$(\sqrt{3} + 2)(\sqrt{3} - 2) =$$

UNIT 10 Radicals

$\sqrt{\text{Fact}}$ or $\sqrt{\text{Fiction}}$?

1.
$$x^0 = 1$$

$$2. \ 2^{-3} = -8$$

3.
$$111,111,111 \times 111,111,111 = 12,345,678,987,654,321$$

4.
$$\sqrt{y^6} = y^3$$

$$5. \quad \sqrt{x^5} = x^2 \sqrt{x}$$

6.
$$\sqrt{x} + \sqrt{y} = \sqrt{xy}$$

7.
$$2\sqrt{3} + \sqrt{3} = 3\sqrt{3}$$

8.
$$\sqrt{12} \cdot \sqrt{3} = 6$$

