Bar graphs make it easy to compare information quickly.
To read a bar graph, find the bar that represents the information you want. Look from the edge of the bar in a straight line to the scale. Read the value from the scale.

Example: The blue whale is 30 meters long.

Use the bar graph to answer the questions.

1. What is the bar graph about? \qquad
2. Which whale on the graph is the longest? \qquad
3. Which whale on the graph is the shortest?
4. Which whale is longer, the fin whale or the sperm whale? \qquad
5. What distance does each mark on the scale represent? \qquad
6. What is the difference between the length of the Baird's beaked whale and the length of the killer whale? \qquad
7. What is the difference between the length of the longest whale and the length of the shortest whale? \qquad

Sometimes it's easier to get information from a graph. Other times it's easier to get the information from a table.

Height of Some of the Tallest Skyscrapers in the World

Building	Location	Height	Stories
Petronas Towers	Kuala Lumpur, Malaysia	1483 ft	88
Sears Tower	Chicago, IL, USA	1450 ft	110
Jin Mao Tower	Shanghai, China	1380 ft	88
Empire State Building	New York, NY, USA	1250 ft	102

Height of Some of the Tallest Skyscrapers in the World

Answer the questions. Check which was easier to use.

Table Graph

1. How tall is the Jin Mao Tower?
2. Which is taller, the Empire State Building or the Sears Tower?
3. Where are the Petronas Towers located?
4. Which building is tallest?
5. What is the difference between the heights of the tallest and shortest buildings?
6. How many buildings are taller than 1300 feet?

You can determine the theoretical probability of an event.
Here is a chart of all possible outcomes or ways the sum of two dice can come up.

Sum	Sum	Sum	Sum	Sum	Sum
$\square \square{ }^{\bullet}$	$\bullet \square 3$	$\because \bullet \square$		$\because \square 6$	$\square \square{ }^{\square} \mathrm{O}$
$\square \square^{\bullet} \cdot$.	$\bullet .{ }^{\circ}$. 4			$\because \square{ }^{\circ} \because$	
- $\because \bullet .4$	$\square . \square{ }^{\bullet}$				
			$\begin{array}{lllll}\because 0 & \because & 8\end{array}$		$\begin{array}{lllll}\square \because: & \because & 10\end{array}$
- $\quad \because 6$	$\square . \square 7$			$\square \square 0^{\because} \square$	$\because:$ $\because \because$ 11
$\bullet\left[\begin{array}{ll}\square: \\ 7\end{array}\right.$		$\square \square \square^{\circ} \cdot \square$	$\square \square 0^{\square} \quad 10$	$\because \square{ }^{\circ} \mathrm{O}$: 11	

To find the probability that the sum of 6 will occur, you can use this formula:
$P($ Event $)=\frac{\text { number of favorable outcomes }}{\text { number of possible outcomes }}$
The probability of a sum of 6 coming up:
$P(6)=\frac{\text { number of ways a sum of six can come up }}{\text { number of possible ways }} \longrightarrow \frac{5}{36} \longrightarrow \begin{gathered}\text { You can predict that a } \\ \text { sum of } 6 \text { will come up } \\ 5 \text { out of } 36 \text { times. }\end{gathered}$

1. You can use the chart above to find the probability of a sum coming up on the dice. Complete each exercise.
$P(2)=\overline{36}$
$P(3)=\overline{36}$
$P(4)=\frac{}{36}$
$P(5)=\overline{36}$
$P(7)=\frac{}{36}$
$P(8)=\overline{36}$
$P(9)=\overline{36}$
$P(10)=\overline{36}$
$P(11)=\frac{}{36}$
$P(12)=\overline{36}$
2. How do the answers above compare to the experimental probabilities you found on page 52 ?
3. What is the theoretical probability that a head will come up when you toss a coin? $\mathrm{P}(\mathrm{H})=$ \qquad
4. What is the theoretical probability that this spinner will land on a 5 ? $P(5)=$ \qquad
5. What is the theoretical probability of picking an M ?

$\mathbf{P}(\mathrm{M})=\ldots$	\mathbf{M}	\mathbf{A}	\mathbf{T}	\mathbf{H}	\mathbf{E}	\mathbf{M}	\mathbf{A}	\mathbf{T}	\mathbf{I}	\mathbf{C}	\mathbf{S}

Each possible arrangement or combination in a definite order is a permutation.
There are 5 dogs in a class at a dog show.

Lucky

Dusty

Muffin

Buttons

Sparky

Ribbons will be awarded for first, second, and third place. Here are the ten possible combinations of three "top dogs." (Combinations are given using each dog's initial.)

LDM LDB LDS LMB LMS LBS DMB DMS MBS BSD

Suppose Lucky, Buttons, and Sparky are the three "top dogs." Because they are awarding 1st, 2nd, and 3rd places, the arrangement of the dogs in order is important. The six arrangements or permutations in 1st, 2nd, and 3rd place order of Lucky, Buttons, and Sparky are

Lucky first	Buttons first		Sparky first
\downarrow	\downarrow		\downarrow
LBS	LSB	BSL BLS	SBL

Suppose prizes for 1st, 2nd, 3rd, and 4th place are awarded in the class at the dog show.

What are the five combinations of 4 "top dogs"?

Suppose Lucky, Buttons, Muffin, and Sparky are the 4 "top dogs." Complete the table to show the possible permutations or arrangements of dogs in 1st, 2nd, 3rd, and 4th places. (A few examples are provided.)

How many permutations are there? \qquad

